Hello World in Tensorflow
1 min readMay 5, 2020
Writing a “ Hello World “ in Tensorflow
model=keras.Sequential([keras.layers.Dense(units=1,input_shape=[1])])
Explanation : This is written usin python and tensorflow and an API in tensorflow called keras , in Keras Dense is used to define a layer of connected neurons, Unit =1 means it has 1 neuron , sequential as the layers are successive , shape of input =1
model.commpile(optimizer='sgd',loss='mean_squared_error')
the loss functions is inbuilt , ‘sgd’=stochastic gradient descent
Input = [-1.0,0.0,1.0,2.0,3.0,4.0]
and this is the desired output figure out the logic
Output=[-3.0,-1.0,1.0,3.0,5.0,7.0]
xs=np.array([-1.0,0.0,1.0,2.0,3.0,4.0], dtype=float)
ys=np.array([-3.0,-1.0,1.0,3.0,5.0,7.0], dtype=float)model.fit(xs,ys,epochs=500)
#fit x->y iteratrions=500
Now using the gained intelligence to predict
print(model.predict([10.0]))
Complete code to Implement in colab would be like :
import tensorflow as tf
import numpy as np
from tensorflow import kerasmodel = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])model.compile(optimizer='sgd', loss='mean_squared_error')xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)model.fit(xs, ys, epochs=500)print(model.predict([10.0]))